X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 olap data warehousing olap

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Human Resources (HR)

Human Resources encompasses all the applications necessary for handling personnel-related tasks for corporate managers and individual employees.  Modules will include Personnel Management, Benefit Management, Payroll Management, Employee Self Service, Data Warehousing and Health & Safety.  

Evaluate Now

Documents related to » olap data warehousing olap

Thinking Radically about Data Warehousing and Big Data: Interview with Roger Gaskell, CTO of Kognitio


Managing data—particularly in large numbers—still is and probably will be the number one priority for many organizations in the upcoming years. Many of the traditional ways to store and analyze large amounts of data are being replaced with new technologies and methodologies to manage the new volume, complexity, and analysis requirements. These include new ways of developing data warehousing, the

olap data warehousing olap  create and populate physical OLAP cubes. The underlying data is held as low-level transactional data in standard relational structures, but to the application layer it appears as a “virtual cube.” By virtualizing the cube structures, organizations can still get a holistic view of their data but with zero latency given that large virtual cubes can be created within just seconds. Moreover, users can benefit from one single version of the truth; instead of contending with multiple physical cubes that rep Read More

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

olap data warehousing olap  of OLAP is that OLAP can only answer questions you know to ask, data mining answers questions you didn''t necessarily know to ask. Data Visualization Tools: Tools that show graphical representations of data, including complex three-dimensional data pictures. The theory is that the user can see trends more effectively in this manner than when looking at complex statistical graphs. Some vendors are making progress in this area using the Virtual Reality Modeling Language (VRML). Metadata Management: Through Read More

Oracle Database 11g for Data Warehousing and Business Intelligence


Oracle Database 11g is a database platform for data warehousing and business intelligence (BI) that includes integrated analytics, and embedded integration and data-quality. Get an overview of Oracle Database 11g’s capabilities for data warehousing, and learn how Oracle-based BI and data warehouse systems can integrate information, perform fast queries, scale to very large data volumes, and analyze any data.

olap data warehousing olap  Database 11g for Data Warehousing and Business Intelligence Oracle Database 11g is a database platform for data warehousing and business intelligence (BI) that includes integrated analytics, and embedded integration and data-quality. Get an overview of Oracle Database 11g’s capabilities for data warehousing, and learn how Oracle-based BI and data warehouse systems can integrate information, perform fast queries, scale to very large data volumes, and analyze any data. Read More

Appliance Power: Crunching Data Warehousing Workloads Faster and Cheaper than Ever


Appliances are taking up permanent residence in the data warehouse (DW). The reason: they are preconfigured, support quick deployment, and accelerate online analytical processing (OLAP) queries against large, multidimensional data sets. Discover the core criteria you should use to evaluate DW appliances, including performance, functionality, flexibility, scalability, manageability, integration, and extensibility.

olap data warehousing olap  accelerate online analytical processing (OLAP) queries against large, multidimensional data sets. Discover the core criteria you should use to evaluate DW appliances, including performance, functionality, flexibility, scalability, manageability, integration, and extensibility. Read More

Microsoft Goes Their Own Way with Data Warehousing Alliance 2000


Microsoft Corp. (Nasdaq: MSFT) today announced that 47 applications and tools from 39 vendors throughout the industry have qualified for Microsoft« Data Warehousing Alliance 2000. Alliance members and partners are committed to delivering tools and applications based on the Microsoft Data Warehousing Framework 2000, an open architecture based on the open standards and services built into the Windows« 2000 operating system, Microsoft SQL Server 7.0 and Office 2000.

olap data warehousing olap  Goes Their Own Way with Data Warehousing Alliance 2000 Event Summary REDMOND, Wash., Nov. 30 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSFT) today announced that 47 applications and tools from 39 top vendors throughout the industry have qualified for Microsoft Data Warehousing Alliance 2000. Alliance members and partners are committed to delivering tools and applications based on the Microsoft Data Warehousing Framework 2000, an open architecture for building business intelligence and analytical a Read More

Linked Enterprise Data: Data at the heart of the company


The data silos of today's business information systems (IS) applications, and the pressure from the current economic climate, globalization, and the Internet make it critical for companies to learn how to manage and extract value from their data. Linked enterprise data (LED) combines the benefits of business intelligence (BI), master data management (MDM), service-oriented architecture (SOA), and search engines to create links among existing data, break down data walls, provide an open, secure, and long-term technological environment, and reduce complexity—read this white paper to find out how.

olap data warehousing olap  Enterprise Data: Data at the heart of the company The data silos of today''s business information systems (IS) applications, and the pressure from the current economic climate, globalization, and the Internet make it critical for companies to learn how to manage and extract value from their data. Linked enterprise data (LED) combines the benefits of business intelligence (BI), master data management (MDM), service-oriented architecture (SOA), and search engines to create links among existing data, Read More

Data Integration: Creating a Trustworthy Data Foundation for Business Intelligence


Organizations combine their historical data with current data from operational systems to satisfy business intelligence analysis and government reporting requirements. This paper discusses the importance of data integration and helps you identify key challenges of integrating data. It also provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data.

olap data warehousing olap  Integration: Creating a Trustworthy Data Foundation for Business Intelligence Organizations combine their historical data with current data from operational systems to satisfy business intelligence analysis and government reporting requirements. This paper discusses the importance of data integration and helps you identify key challenges of integrating data. It also provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data. Read More

Data Blending for Dummies


Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant.

Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data providers, department data stores, in-house databases, and more, and become faster at delivering better information and results to their organizations. In the past, the challenge for data analysts has been accessing this data and cleansing and preparing the data for analysis. The access, cleansing, and preparing data stages are complex and time intensive. These days, however, software tools can help reduce the burden of data preparation, and turn data blending into an asset.

Read this e-book to understand why data blending is important, and learn how combining data means that you can get answers to your business questions and better meet your business needs. Also learn how to identify what features to look for in data blending software solutions, and how to successfully deploy these tools within your business. Data Blending for Dummies breaks the subject down into digestible sections, from understanding data blending to using data blending in the real world. Read on to discover how data blending can help your organization use its data sources to the utmost.

olap data warehousing olap  Blending for Dummies Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant. Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data Read More

How Companies Use Data for Competitive Advantage


Find out in Leveling the Playing Field: How Companies Use Data for Competitive Advantage.

olap data warehousing olap  Companies Use Data for Competitive Advantage How Companies Use Data for Competitive Advantage Today, many businesses find they are under siege dealing with an explosion of data. Yet the best performing companies are mastering their data—and using it for competitive advantage. How are they able to accomplish this? What best practices, approaches, and technologies are they employing? Find out in Leveling the Playing Field: How Companies Use Data for Competitive Advantage . In this Economist Business Read More

Backing up Data in the Private Cloud: Meeting the Challenges of Remote Data Protection - Requirements and Best Practices


This white paper describes some of the common challenges associated with protecting data on laptops and at home and remote offices and portrays proven solutions to the challenges of protecting distributed business data by establishing a private cloud/enterprise cloud. Learn which best practices can ensure business continuity throughout an organization with a distributed information technology (IT) infrastructure.

olap data warehousing olap  up Data in the Private Cloud: Meeting the Challenges of Remote Data Protection - Requirements and Best Practices This white paper describes some of the common challenges associated with protecting data on laptops and at home and remote offices and portrays proven solutions to the challenges of protecting distributed business data by establishing a private cloud/enterprise cloud. Learn which best practices can ensure business continuity throughout an organization with a distributed information Read More

Paperless Warehousing


Paperless Warehousing Pty Limited was incorporated in 1988 by two of the existing Directors with a vision to overhaul traditional warehousing operations by improving the logistics processes inside and outside the four walls of a warehouse thus providing Companies with a market advantage. Based in Sydney, Australia, Paperless Warehousing offers a wealth of experience, solidarity and dependability in Warehouse and Transport Management Systems. All our people are employees and are practitioners of the Logistics industry who know our products in depth and act as the quality control department for our developers. They are not outside consultants and are all housed in the same office in Sydney which creates an energy-filled atmosphere for the development and cross fertilisation of future enhancements. At Paperless Warehousing we have improved and modernised workflow by digitising the traditional paper based activities and replacing them with them with real time Radio Frequency Scanned or Interactive Voice Directed Tasks and/or RFID all within the same package. We have successfully implemented numerous major projects in various industry sectors across Australia and our software has been implemented in over 12 countries.

olap data warehousing olap   Read More

Considerations for Owning versus Outsourcing Data Center Physical Infrastructure


When faced with the decision of upgrading an existing data center, building new, or leasing space in a retail colocation data center, there are both quantitative and qualitative differences to consider. The 10-year TCO may favor upgrading or building over outsourcing; however, this paper demonstrates that the economics may be overwhelmed by a business’ sensitivity to cash flow, cash crossover point, deployment timeframe, data center life expectancy, regulatory requirements, and other strategic factors. This paper discusses how to assess these key factors to help make a sound decision.

olap data warehousing olap  for Owning versus Outsourcing Data Center Physical Infrastructure When faced with the decision of upgrading an existing data center, building new, or leasing space in a retail colocation data center, there are both quantitative and qualitative differences to consider. The 10-year TCO may favor upgrading or building over outsourcing; however, this paper demonstrates that the economics may be overwhelmed by a business’ sensitivity to cash flow, cash crossover point, deployment timeframe, Read More

Understanding the PCI Data Security Standard


The payment card industry data security standard (PCI DSS) defines a comprehensive set of requirements to enhance and enforce payment account data security in a proactive rather than passive way. These include security management, policies, procedures, network architectures, software design, and other protective measures. Get a better understanding of the PCC DSS and learn the costs and benefits of compliance.

olap data warehousing olap  the PCI Data Security Standard MessageLabs Hosted Web Security and Content Filtering service operates at the Internet level, intercepting viruses, and spyware. Source : MessageLabs | Now part of Symantec Resources Related to Understanding the PCI Data Security Standard : Payment Card Industry Data Security Standard (PCI DSS) (Wikipedia) Understanding the PCI Data Security Standard Data Security is also known as : Data Security Architecture , Data Security Articles , Data Security Audit , Read More

Big Data: Operationalizing the Buzz


Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more.

olap data warehousing olap  Data: Operationalizing the Buzz Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more. Read More