X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 etl data warehousing provides

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Human Resources (HR)

Human Resources encompasses all the applications necessary for handling personnel-related tasks for corporate managers and individual employees.  Modules will include Personnel Management, Benefit Management, Payroll Management, Employee Self Service, Data Warehousing and Health & Safety.  

Evaluate Now

Documents related to » etl data warehousing provides

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

etl data warehousing provides  are currently over 50 ETL tools on the market. The data acquisition phase can cost millions of dollars and take months or even years to complete. Data acquisition is then an ongoing, scheduled process, which is executed to keep the warehouse current to a pre-determined period in time, (i.e. the warehouse is refreshed monthly). Changed Data Capture: The periodic update of the warehouse from the transactional system(s) is complicated by the difficulty of identifying which records in the source have changed Read More

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

etl data warehousing provides  via another set of ETL processes. It is in this layer data begins to take shape and it is not uncommon to have some end-user application access data from this layer especially if they are time sensitive, as data will become available here before it is transformed into the dimension / performance layer. Traditionally this layer is implemented in the Third Normal Form (3NF). Optimizing 3NF Optimizing a 3NF schema in Oracle requires the three Ps – Power, Partitioning and Parallel Execution. Power means Read More

Computer Associates Splashes Into the Data Warehousing Market with Platinum Technology Acquisition


Computer Associates DecisionBase is an Extract/Transform/Load tool designed to help in the population and maintenance of data warehouses. First released in March of 1998, the product is geared towards large implementations with the need for metadata management. The current release is 1.9, which is the fourth release of the product.

etl data warehousing provides  of vendors in the ETL market in the mid-1990''s was small, comprised of basically four companies (Prism, Carleton, Evolutionary Technologies, Trinzic) plus some modest offerings from IBM. In the past four years, the space has become very crowded, with over fifty vendors competing in various market niches (e.g. specializing in access to VSAM databases). Four vendors still primarily control the general market, including Ardent, Computer Associates, Informatica, and Sagent, with some offerings from IBM and Read More

A One-stop Event for Business Intelligence and Data Warehousing Information


The Data Warehousing Institute (TDWI) hosts quarterly World Conferences to help organizations involved in data warehousing, business intelligence, and performance management. These conferences supply a wealth of information aimed at improving organizational decision-making, optimizing performance, and achieving business objectives.

etl data warehousing provides  extract, transform, and load (ETL) development. It is important not to underestimate the importance of data integration, as the way data is integrated into a data warehouse or BI solution is the essence of that system. If a scorecard is developed to measure an organization''s sales metrics and the source data is not accurate, the key performance indicators (KPIs) set and reported on will be meaningless. Administration and Technology The administration and technology track identified and covered topics Read More

Distilling Data: The Importance of Data Quality in Business Intelligence


As an enterprise’s data grows in volume and complexity, a comprehensive data quality strategy is imperative to providing a reliable business intelligence environment. This article looks at issues in data quality and how they can be addressed.

etl data warehousing provides  extract, transform, and load (ETL) process in a data warehousing system extracts records from data source(s), transforms them using rules to convert data into a form that is suitable for reporting and analysis, and finally loads the transformed records into the destination (typically a data warehouse or data mart). Data cleansing is an integral part of the transformation process and enforces business and schema rules on each record and field. Data cleansing involves the application of quality screens Read More

Data Evolution: Why a Comprehensive Data Management Platform Supersedes the Data Integration Toolbox


Today’s organizations have incredible amounts of information to be managed, and in many cases it is quickly spiraling out of control. To address the emerging issues around managing, governing, and using data, organizations have been acquiring quite a toolbox of data integration tools and technologies. One of the core drivers for these tools and technologies has been the ever-evolving world of the data warehouse.

etl data warehousing provides  Evolution: Why a Comprehensive Data Management Platform Supersedes the Data Integration Toolbox Today’s organizations have incredible amounts of information to be managed, and in many cases it is quickly spiraling out of control. To address the emerging issues around managing, governing, and using data, organizations have been acquiring quite a toolbox of data integration tools and technologies. One of the core drivers for these tools and technologies has been the ever-evolving world of the data ware Read More

Operationalizing the Buzz: Big Data 2013


The world of Big Data is maturing at a dramatic pace and supporting many of the project activities, information users and financial sponsors that were once the domain of traditional structured data management projects. Research conducted by Enterprise Management Associates (EMA) and 9sight Consulting makes a clear case for the maturation of Big Data as a critical approach for innovative companies. The survey went beyond simple questions of strategy, adoption, and use to explore why and how companies are utilizing Big Data. Download the report and get all the results.

etl data warehousing provides  the Buzz: Big Data 2013 The world of Big Data is maturing at a dramatic pace and supporting many of the project activities, information users and financial sponsors that were once the domain of traditional structured data management projects. Research conducted by Enterprise Management Associates (EMA) and 9sight Consulting makes a clear case for the maturation of Big Data as a critical approach for innovative companies. The survey went beyond simple questions of strategy, adoption, and Read More

Agile Data Masking: Critical to Data Loss Prevention and Threat Reduction


Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes.

etl data warehousing provides  Data Masking: Critical to Data Loss Prevention and Threat Reduction Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes. Read More

Unified Data Management: A Collaboration of Data Disciplines and Business Strategies


In most organizations today, data are managed in isolated silos by independent teams using various data management tools for data quality, integration, governance, and so on. In response to this situation, some organizations are adopting unified data management (UDM), a practice that holistically coordinates teams and integrates tools. This report can help your organization plan and execute effective UDM efforts.

etl data warehousing provides  Data Management: A Collaboration of Data Disciplines and Business Strategies In most organizations today, data are managed in isolated silos by independent teams using various data management tools for data quality, integration, governance, and so on. In response to this situation, some organizations are adopting unified data management (UDM), a practice that holistically coordinates teams and integrates tools. This report can help your organization plan and execute effective UDM efforts. Read More

Re-think Data Integration: Delivering Agile BI Systems with Data Virtualization


Today’s business intelligence (BI) systems have to change, because they’re confronted with new technological developments and new business requirements, such as productivity improvement and systems as well as data in the cloud. This white paper describes a lean form of on-demand data integration technology called data virtualization, and shows you how deploying data virtualization results in BI systems with simpler and more agile architectures that can confront the new challenges much easier.

etl data warehousing provides  think Data Integration: Delivering Agile BI Systems with Data Virtualization Today’s business intelligence (BI) systems have to change, because they’re confronted with new technological developments and new business requirements, such as productivity improvement and systems as well as data in the cloud. This white paper describes a lean form of on-demand data integration technology called data virtualization, and shows you how deploying data virtualization results in BI systems with simpler and more Read More

Data Mining with MicroStrategy: Using the BI Platform to Distribute Data Mining and Predictive Analytics to the Masses


Data mining and predictive analysis applications can help you make knowledge-driven decisions and improve efficiency. But the user adoption of these tools has been slow due to their lack of business intelligence (BI) functionality, proactive information distribution, robust security, and other necessities. Now there’s an integrated enterprise BI system that can deliver data mining and predictive analysis. Learn more.

etl data warehousing provides  Mining with MicroStrategy: Using the BI Platform to Distribute Data Mining and Predictive Analytics to the Masses Data mining and predictive analysis applications can help you make knowledge-driven decisions and improve efficiency. But the user adoption of these tools has been slow due to their lack of business intelligence (BI) functionality, proactive information distribution, robust security, and other necessities. Now there’s an integrated enterprise BI system that can deliver data mining and Read More

Data Migration Management: A Methodology to Sustaining Data Integrity for Going Live and Beyond


For many new system deployments, data migration is one of the last priorities. Data migration is often viewed as simply transferring data between systems, yet the business impact can be significant and detrimental to business continuity when proper data management is not applied. By embracing the five phases of a data migration management methodology outlined in this paper, you can deliver a new system with quality data.

etl data warehousing provides  Migration Management: A Methodology to Sustaining Data Integrity for Going Live and Beyond For many new system deployments, data migration is one of the last priorities. Data migration is often viewed as simply transferring data between systems, yet the business impact can be significant and detrimental to business continuity when proper data management is not applied. By embracing the five phases of a data migration management methodology outlined in this paper, you can deliver a new system with quali Read More

Big Data: Operationalizing the Buzz


Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more.

etl data warehousing provides  Data: Operationalizing the Buzz Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more. Read More

Transactional Data: Driving Real-Time Business


A global survey of IT leaders shows that most organizations find it challenging to convert high volumes of fresh transactional data into knowledge that business users can efficiently access, understand, and act on. SAP and HP are tackling this challenge head-on. Download this article to learn more.

etl data warehousing provides  Data: Driving Real-Time Business A global survey of IT leaders shows that most organizations find it challenging to convert high volumes of fresh transactional data into knowledge that business users can efficiently access, understand, and act on. SAP and HP are tackling this challenge head-on. Download this article to learn more. Read More

The Fast Path to Big Data


Today, most people acknowledge that big data is more than a fad and is a proven model for leveraging existing information sources to make smarter, more immediate decisions that result in better business outcomes. Big data has already been put in use by companies across vertical market segments to improve top- and bottom-line performance. As unstructured data becomes a pervasive source of business intelligence, big data will continue to play a more strategic role in enterprise information technology (IT). Companies that recognize this reality—and that act on it in a technologically, operationally, and economically optimized way—will gain sustainable competitive advantages.

etl data warehousing provides  Fast Path to Big Data Today, most people acknowledge that big data is more than a fad and is a proven model for leveraging existing information sources to make smarter, more immediate decisions that result in better business outcomes. Big data has already been put in use by companies across vertical market segments to improve top- and bottom-line performance. As unstructured data becomes a pervasive source of business intelligence, big data will continue to play a more strategic role in enterprise Read More