X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 etl data warehousing provides

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Core HR

Core human resources (HR) includes the HR system of record that combines HR transactions, processes, and data. Main capabilities also include payroll management, benefits management, workforce management, and training management.  

Start Now

Documents related to » etl data warehousing provides

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

etl data warehousing provides  are currently over 50 ETL tools on the market. The data acquisition phase can cost millions of dollars and take months or even years to complete. Data acquisition is then an ongoing, scheduled process, which is executed to keep the warehouse current to a pre-determined period in time, (i.e. the warehouse is refreshed monthly). Changed Data Capture: The periodic update of the warehouse from the transactional system(s) is complicated by the difficulty of identifying which records in the source have changed Read More

The Evolution of a Real-time Data Warehouse


Real-time data warehouses are common in some organizations. This article reviews the basic concepts of a real-time data warehouse and it will help you determine if your organization needs this type of IT solution.

etl data warehousing provides  data warehouse design. All ETL data warehouse processes were originally designed to be executed in batch mode, during previously scheduled downtimes. All operational data from distinct sources (e.g. ERP systems) was extracted, cleansed under a stage repository, and loaded into the data warehouse over long periods of time, mostly at night. These processes can take minutes or hours, depending on the volume of data being uploaded to the data warehouse. With the pressure to load more recent data into the data Read More

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

etl data warehousing provides  via another set of ETL processes. It is in this layer data begins to take shape and it is not uncommon to have some end-user application access data from this layer especially if they are time sensitive, as data will become available here before it is transformed into the dimension / performance layer. Traditionally this layer is implemented in the Third Normal Form (3NF). Optimizing 3NF Optimizing a 3NF schema in Oracle requires the three Ps – Power, Partitioning and Parallel Execution. Power means tha Read More

Computer Associates Splashes Into the Data Warehousing Market with Platinum Technology Acquisition


Computer Associates DecisionBase is an Extract/Transform/Load tool designed to help in the population and maintenance of data warehouses. First released in March of 1998, the product is geared towards large implementations with the need for metadata management. The current release is 1.9, which is the fourth release of the product.

etl data warehousing provides  of vendors in the ETL market in the mid-1990''s was small, comprised of basically four companies (Prism, Carleton, Evolutionary Technologies, Trinzic) plus some modest offerings from IBM. In the past four years, the space has become very crowded, with over fifty vendors competing in various market niches (e.g. specializing in access to VSAM databases). Four vendors still primarily control the general market, including Ardent, Computer Associates, Informatica, and Sagent, with some offerings from IBM and Or Read More

A Road Map to Data Migration Success


Many significant business initiatives and large IT projects depend upon a successful data migration. But when migrated data is transformed for new uses, project teams encounter some very specific management and technical challenges. Minimizing the risk of these tricky migrations requires effective planning and scoping. Read up on the issues unique to data migration projects, and find out how to best approach them.

etl data warehousing provides  Strategies | Utility | ETL Data Migration | Legacy Data Migration | ETL Data | Data Migration Documentation | ETL Strategy | ETL Mapping | ETL Tools | Data Warehousing ETL | Powercenter ETL | ETL Documentation | IT Projects | One-time Movement of Data | Business Objects | SAP | Business Objects SAP | SAP Company | Migration Tasks | Migration Assessment | MDM | Master Data Management | MDM ETL | Master Data Management MDM | ETL Architecture | SOA MDM | MDM Products | MDM Solution | MDM Tools | Online Data Read More

Data Integration: Creating a Trustworthy Data Foundation for Business Intelligence


Organizations combine their historical data with current data from operational systems to satisfy business intelligence analysis and government reporting requirements. This paper discusses the importance of data integration and helps you identify key challenges of integrating data. It also provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data.

etl data warehousing provides  Integration: Creating a Trustworthy Data Foundation for Business Intelligence Organizations combine their historical data with current data from operational systems to satisfy business intelligence analysis and government reporting requirements. This paper discusses the importance of data integration and helps you identify key challenges of integrating data. It also provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data. Read More

Master Data Management: Extracting Value from Your Most Important Intangible Asset


In a 2006 SAP survey, 93 percent of respondents experienced data management issues during their most recent projects. The problem: many organizations believe that they are using master data, when in fact what they are relying on is data that is dispersed throughout the enterprise. Discover the importance of master data and how the ideal master data management (MDM) solution can help your business get it under control.

etl data warehousing provides  Data Management: Extracting Value from Your Most Important Intangible Asset Master Data Management: Extracting Value from Your Most Important Intangible Asset If you receive errors when attempting to view this white paper, please install the latest version of Adobe Reader. Founded in 1972, SAP has a rich history of innovation and growth as a true industry leader. SAP currently has sales and development locations in more than 50 countries worldwide and is listed on several exchanges, including the Read More

Big Data Comes of Age: Shifting to a Real-time Data Platform


New data sources are fueling innovation while stretching the limitations of traditional data management strategies and structures. Data warehouses are giving way to purpose-built platforms more capable of meeting the real-time needs of more demanding end users and the opportunities presented by big data. Read this white paper to learn more about the significant strategy shifts underway to transform traditional data ecosystems by creating a unified view of the data terrain necessary to support big data and the real-time needs of innovative companies.

etl data warehousing provides  Data Comes of Age: Shifting to a Real-time Data Platform New data sources are fueling innovation while stretching the limitations of traditional data management strategies and structures. Data warehouses are giving way to purpose-built platforms more capable of meeting the real-time needs of more demanding end users and the opportunities presented by big data. Read this white paper to learn more about the significant strategy shifts underway to transform traditional data ecosystems by creating a Read More

Data Center Projects: Advantages of Using a Reference Design


It is no longer practical or cost-effective to completely engineer all aspects of a unique data center. Re-use of proven, documented subsystems or complete designs is a best practice for both new data centers and for upgrades to existing data centers. Adopting a well-conceived reference design can have a positive impact on both the project itself, as well as on the operation of the data center over its lifetime. Reference designs simplify and shorten the planning and implementation process and reduce downtime risks once up and running. In this paper reference designs are defined and their benefits are explained.

etl data warehousing provides  Center Projects: Advantages of Using a Reference Design It is no longer practical or cost-effective to completely engineer all aspects of a unique data center. Re-use of proven, documented subsystems or complete designs is a best practice for both new data centers and for upgrades to existing data centers. Adopting a well-conceived reference design can have a positive impact on both the project itself, as well as on the operation of the data center over its lifetime. Reference designs simplify and Read More

Rover Data Systems


Rover Data Systems, Inc. was founded with the express purpose of providing an Enterprise Software Solution to address the needs of small and medium-sized Manufacturers and Distributors. During the time that Rover Data Systems has been in business it has accumulated a satisfied customer base, all running their business functions on Millennium III (M3) software. These companies range from the small (<$10M) to the mid-range (>$100M) and cover a broad range of industries from Electronics Manufacturing to Auto Aftermarket Manufacturing to distribution and service. Over the years, the company has also distinguished itself by providing excellent service to its growing installed base. In fact, Rover Data Systems has never lost an installed account to a competitive software product. The first customer still runs all of their operations on the Millennium III Enterprise System.

etl data warehousing provides  Data Systems Rover Data Systems, Inc. was founded with the express purpose of providing an Enterprise Software Solution to address the needs of small and medium-sized Manufacturers and Distributors. During the time that Rover Data Systems has been in business it has accumulated a satisfied customer base, all running their business functions on Millennium III (M3) software. These companies range from the small ( Read More

Data Quality: A Survival Guide for Marketing


Even with the finest marketing organizations, the success of marketing comes down to the data. Ensuring data quality can be a significant challenge, particularly when you have thousands or even millions of prospect records in your CRM system and you are trying to target the right prospect. Data quality, data integration, and other functions of enterprise information management (EIM) are crucial to this endeavor. Read more.

etl data warehousing provides  Quality: A Survival Guide for Marketing Even with the finest marketing organizations, the success of marketing comes down to the data. Ensuring data quality can be a significant challenge, particularly when you have thousands or even millions of prospect records in your CRM system and you are trying to target the right prospect. Data quality, data integration, and other functions of enterprise information management (EIM) are crucial to this endeavor. Read more. Read More

Protecting Critical Data


The first step in developing a tiered data storage strategy is to examine the types of information you store and the time required to restore the different data classes to full operation in the event of a disaster. Learn how in this white paper from Stonefly.

etl data warehousing provides  Critical Data The first step in developing a tiered data storage strategy is to examine the types of information you store and the time required to restore the different data classes to full operation in the event of a disaster. Learn how in this white paper from Stonefly. Read More

Big Data: Operationalizing the Buzz


Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more.

etl data warehousing provides  Data: Operationalizing the Buzz Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more. Read More

The New Virtual Data Centre


Old-style, one application per physical server data centers are not only nearing the end of their useful lives, but are also becoming barriers to a business’ future success. Virtualization has come to the foreground, yet it also creates headaches for data center and facilities managers. Read about aspects of creating a strategy for a flexible and effective data center aimed to carry your business forward.

etl data warehousing provides  New Virtual Data Centre Old-style, one application per physical server data centers are not only nearing the end of their useful lives, but are also becoming barriers to a business’ future success. Virtualization has come to the foreground, yet it also creates headaches for data center and facilities managers. Read about aspects of creating a strategy for a flexible and effective data center aimed to carry your business forward. Read More

Increasing Sales and Reducing Costs across the Supply Chain-Focusing on Data Quality and Master Data Management


Nearly half of all US companies have serious data quality issues. The problem is that most are not thinking about their business data as being valuable. But in reality data has become—in some cases—just as valuable as inventory. The solution to most organizational data challenges today is to combine a strong data quality program with a master data management (MDM) program, helping businesses leverage data as an asset.

etl data warehousing provides  Sales and Reducing Costs across the Supply Chain-Focusing on Data Quality and Master Data Management Nearly half of all US companies have serious data quality issues. The problem is that most are not thinking about their business data as being valuable. But in reality data has become—in some cases—just as valuable as inventory. The solution to most organizational data challenges today is to combine a strong data quality program with a master data management (MDM) program, helping businesses Read More