X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 etl data mart

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Outsourcing, IT Infrastructure

The IT Infrastructure Outsourcing knowledge base focuses on the selection of companies who provide outsource services in the areas of information technology (IT) infrastructure. The typical types of activities that these providers perform include data center operations; network operations; backup/recovery services, data storage management services; system administration services; end user support of desktop PCs, laptops, and handheld devices; web site, or application hosting, etc.  

Evaluate Now

Documents related to » etl data mart

Distilling Data: The Importance of Data Quality in Business Intelligence


As an enterprise’s data grows in volume and complexity, a comprehensive data quality strategy is imperative to providing a reliable business intelligence environment. This article looks at issues in data quality and how they can be addressed.

etl data mart  extract, transform, and load (ETL) process in a data warehousing system extracts records from data source(s), transforms them using rules to convert data into a form that is suitable for reporting and analysis, and finally loads the transformed records into the destination (typically a data warehouse or data mart). Data cleansing is an integral part of the transformation process and enforces business and schema rules on each record and field. Data cleansing involves the application of quality screens Read More

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

etl data mart  are currently over 50 ETL tools on the market. The data acquisition phase can cost millions of dollars and take months or even years to complete. Data acquisition is then an ongoing, scheduled process, which is executed to keep the warehouse current to a pre-determined period in time, (i.e. the warehouse is refreshed monthly). Changed Data Capture: The periodic update of the warehouse from the transactional system(s) is complicated by the difficulty of identifying which records in the source have changed Read More

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

etl data mart  via another set of ETL processes. It is in this layer data begins to take shape and it is not uncommon to have some end-user application access data from this layer especially if they are time sensitive, as data will become available here before it is transformed into the dimension / performance layer. Traditionally this layer is implemented in the Third Normal Form (3NF). Optimizing 3NF Optimizing a 3NF schema in Oracle requires the three Ps – Power, Partitioning and Parallel Execution. Power means Read More

Ardent Software Enters the SAP Data Extraction Market


Ardent Software has announced the addition of SAP extraction and load capabilities to their DataStage product, increasing their strength in the Extract/Transform/Load tool market. Due to the prevalence of SAP in the Enterprise Resource Planning space, this addition will provide a competitive advantage over some of the other major ETL vendors such as Sagent and Computer Associates.

etl data mart  very few of the ETL ( Extract/Transform/Load ) tool vendors have produced modules that allow extraction from SAP. The vendors have had difficulty due to the specialized knowledge of SAP required to produce the custom code which could understand SAP''s internal data formats. Ardent''s entry into this market will give it leverage with any corporation that uses SAP''s Enterprise Resource Planning system. The ability to integrate ERP systems with data warehouses and provide true enterprise-wide information is Read More

Computer Associates Splashes Into the Data Warehousing Market with Platinum Technology Acquisition


Computer Associates DecisionBase is an Extract/Transform/Load tool designed to help in the population and maintenance of data warehouses. First released in March of 1998, the product is geared towards large implementations with the need for metadata management. The current release is 1.9, which is the fourth release of the product.

etl data mart  of vendors in the ETL market in the mid-1990''s was small, comprised of basically four companies (Prism, Carleton, Evolutionary Technologies, Trinzic) plus some modest offerings from IBM. In the past four years, the space has become very crowded, with over fifty vendors competing in various market niches (e.g. specializing in access to VSAM databases). Four vendors still primarily control the general market, including Ardent, Computer Associates, Informatica, and Sagent, with some offerings from IBM and Or Read More

Data Quality Trends and Adoption


While much of the interest in data quality (DQ) solutions had focused on avoiding failure of data management-related initiatives, organizations now look to DQ efforts to improve operational efficiencies, reduce wasted costs, optimize critical business processes, provide data transparency, and improve customer experiences. Read what DQ purchase and usage trends across UK and US companies reveal about DQ goals and drivers.

etl data mart  Quality Trends and Adoption While much of the interest in data quality (DQ) solutions had focused on avoiding failure of data management-related initiatives, organizations now look to DQ efforts to improve operational efficiencies, reduce wasted costs, optimize critical business processes, provide data transparency, and improve customer experiences. Read what DQ purchase and usage trends across UK and US companies reveal about DQ goals and drivers. Read More

The Path to Healthy Data Governance


Many companies are finally treating their data with all the necessary data quality processes, but they also need to align their data with a more complex corporate view. A framework of policies concerning its management and usage will help exploit the data’s usefulness. TEC research analyst Jorge Garcia explains why for a data governance initiative to be successful, it must be understood as a key business driver, not merely a technological enhancement.

etl data mart  Path to Healthy Data Governance This article is based on the presentation, “From Data Quality to Data Governance,” by Jorge García, given at ComputerWorld Technology Insights in Toronto, Canada, on October 4, 2011. Modern organizations recognize that data volumes are increasing. More importantly, they have come to realize that the complexity of processing this data has also grown in exponential ways, and it’s still growing. Many companies are finally treating their data with all the necessary Read More

Data Blending for Dummies


Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant.

Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data providers, department data stores, in-house databases, and more, and become faster at delivering better information and results to their organizations. In the past, the challenge for data analysts has been accessing this data and cleansing and preparing the data for analysis. The access, cleansing, and preparing data stages are complex and time intensive. These days, however, software tools can help reduce the burden of data preparation, and turn data blending into an asset.

Read this e-book to understand why data blending is important, and learn how combining data means that you can get answers to your business questions and better meet your business needs. Also learn how to identify what features to look for in data blending software solutions, and how to successfully deploy these tools within your business. Data Blending for Dummies breaks the subject down into digestible sections, from understanding data blending to using data blending in the real world. Read on to discover how data blending can help your organization use its data sources to the utmost.

etl data mart  Blending for Dummies Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant. Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data Read More

Increasing Sales and Reducing Costs across the Supply Chain-Focusing on Data Quality and Master Data Management


Nearly half of all US companies have serious data quality issues. The problem is that most are not thinking about their business data as being valuable. But in reality data has become—in some cases—just as valuable as inventory. The solution to most organizational data challenges today is to combine a strong data quality program with a master data management (MDM) program, helping businesses leverage data as an asset.

etl data mart  Sales and Reducing Costs across the Supply Chain-Focusing on Data Quality and Master Data Management Nearly half of all US companies have serious data quality issues. The problem is that most are not thinking about their business data as being valuable. But in reality data has become—in some cases—just as valuable as inventory. The solution to most organizational data challenges today is to combine a strong data quality program with a master data management (MDM) program, helping businesses Read More

Data Quality Strategy: A Step-by-Step Approach


To realize the benefits of their investments in enterprise computing systems, organizations must have a detailed understanding of the quality of their data—how to clean it and how to keep it clean. Those organizations that approach this issue strategically will be successful. But what goes into a data quality strategy? This paper from Business Objects, an SAP company, explores the strategy in the context of data quality.

etl data mart  Quality Strategy: A Step-by-Step Approach To realize the benefits of their investments in enterprise computing systems, organizations must have a detailed understanding of the quality of their data—how to clean it and how to keep it clean. Those organizations that approach this issue strategically will be successful. But what goes into a data quality strategy? This paper from Business Objects, an SAP company, explores the strategy in the context of data quality. Read More

2013 Big Data Opportunities Survey


While big companies such as Google, Facebook, eBay, and Yahoo! were the first to harness the analytic power of big data, organizations of all sizes and industry groups are now leveraging big data. A survey of 304 data managers and professionals was conducted by Unisphere Research in April 2013 to assess the enterprise big data landscape, the types of big data initiatives being invested in by companies today, and big data challenges. Read this report for survey responses and a discussion of the results.

etl data mart  Big Data Opportunities Survey While big companies such as Google, Facebook, eBay, and Yahoo! were the first to harness the analytic power of big data, organizations of all sizes and industry groups are now leveraging big data. A survey of 304 data managers and professionals was conducted by Unisphere Research in April 2013 to assess the enterprise big data landscape, the types of big data initiatives being invested in by companies today, and big data challenges. Read this report for survey responses Read More

Agile Data Masking: Critical to Data Loss Prevention and Threat Reduction


Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes.

etl data mart  Data Masking: Critical to Data Loss Prevention and Threat Reduction Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes. Read More

Types of Prefabricated Modular Data Centers


Data center systems or subsystems that are pre-assembled in a factory are often described with terms like prefabricated, containerized, modular, skid-based, pod-based, mobile, portable, self-contained, all-in-one, and more. There are, however, important distinctions between the various types of factory-built building blocks on the market. This paper proposes standard terminology for categorizing the types of prefabricated modular data centers, defines and compares their key attributes, and provides a framework for choosing the best approach(es) based on business requirements.

etl data mart  of Prefabricated Modular Data Centers Data center systems or subsystems that are pre-assembled in a factory are often described with terms like prefabricated, containerized, modular, skid-based, pod-based, mobile, portable, self-contained, all-in-one, and more. There are, however, important distinctions between the various types of factory-built building blocks on the market. This paper proposes standard terminology for categorizing the types of prefabricated modular data centers, defines and Read More

Demystifying Data Science as a Service (DaaS)


With advancements in technology, data science capability and competence is becoming a minimum entry requirement in areas which have not traditionally been thought of as data-focused industries. As more companies perceive the significance of real-time data capture and analysis, data as a service will become the next big thing. India is now the third largest internet user after China and the U.S., and the Indian economy has been growing rapidly. Read this white paper to find out more about how data SaaS is set to become a vital part of business intelligence and analytics, and how India will play a role in this trend.

etl data mart  Data Science as a Service (DaaS) With advancements in technology, data science capability and competence is becoming a minimum entry requirement in areas which have not traditionally been thought of as data-focused industries. As more companies perceive the significance of real-time data capture and analysis, data as a service will become the next big thing. India is now the third largest internet user after China and the U.S., and the Indian economy has been growing rapidly. Read this white Read More

Addressing the Complexities of Remote Data Protection


As companies expand operations into new markets, the percentage of total corporate data in remote offices is increasing. Remote offices have unique backup and recovery requirements in order to support a wide range of applications, and to protect against a wide range of risk factors. Discover solutions that help organizations protect remote data and offer extensive data protection and recovery solutions for remote offices.

etl data mart  the Complexities of Remote Data Protection Because data protection is a concern for organizations of all sizes, IBM offers remote data protection for the enterprise, as well. This high performance and easy-to-use service delivers consistent and cost-effective data protection without increased network investment. Source: IBM Resources Related to Addressing the Complexities of Remote Data Protection : Continuous Data Protection (CDP) (Wikipedia) Addressing the Complexities of Remote Data Read More