X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 data warehousing olap etl

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Human Resources (HR)

Human Resources encompasses all the applications necessary for handling personnel-related tasks for corporate managers and individual employees.  Modules will include Personnel Management, Benefit Management, Payroll Management, Employee Self Service, Data Warehousing and Health & Safety.  

Evaluate Now

Documents related to » data warehousing olap etl

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

data warehousing olap etl  Definition of Data Warehousing Biographical Information Bill Inmon Bill Inmon is universally recognized as the father of the data warehouse. He has over 26 years of database technology management experience and data warehouse design expertise, and has published 36 books and more than 350 articles in major computer journals. His books have been translated into nine languages. He is known globally for his seminars on developing data warehouses and has been a keynote speaker for every major computing Read More

Distilling Data: The Importance of Data Quality in Business Intelligence


As an enterprise’s data grows in volume and complexity, a comprehensive data quality strategy is imperative to providing a reliable business intelligence environment. This article looks at issues in data quality and how they can be addressed.

data warehousing olap etl  When embarking on a data warehousing or business intelligence project, it is essential for organizations to emphasize the quality of data that is used for analysis and subsequent decision making. As data captured from a multitude of sources makes its way to an enterprise data warehouse or data marts, a data quality framework creates a screening process that measures the purity of the data and corrects any inconsistencies found. This article walks the reader through a typical data quality strategy by Read More

The Evolution of a Real-time Data Warehouse


Real-time data warehouses are common in some organizations. This article reviews the basic concepts of a real-time data warehouse and it will help you determine if your organization needs this type of IT solution.

data warehousing olap etl  of products for deploying data warehousing solutions, such as Exadata Storage Server (based on the HP ProLiant DL180 G5 server), HP Oracle Database Machine designed for multiterabyte data warehouses, and the Oracle Warehouse Builder integration tool that supports advanced data loads and data capture for low latency databases. They also offer other products like Oracle Partitioning, which can lower query times and increase data availability. Teradata Among other products offered, Terada Database 12 is an Read More

A One-stop Event for Business Intelligence and Data Warehousing Information


The Data Warehousing Institute (TDWI) hosts quarterly World Conferences to help organizations involved in data warehousing, business intelligence, and performance management. These conferences supply a wealth of information aimed at improving organizational decision-making, optimizing performance, and achieving business objectives.

data warehousing olap etl  for Business Intelligence and Data Warehousing Information The Data Warehousing Institute ( TDWI ) hosts its quarterly World Conference in cities across the US to help organizations involved in data warehousing, business intelligence (BI), and performance management, by giving them access to industry experts, and providing impartial classes related to topics pertinent to the industry. As the industry grows, organizations are faced with questions about how to best access their data to drive profits and Read More

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

data warehousing olap etl  Data Warehouse Concepts , Data Warehousing Information Center , Data Integration Paper , Data Warehouse Software , Data Warehousing Analysis , Data Warehouse Community , Data Warehouse Automation , Perspectives on Data Warehousing , Data Warehousing OLAP , Resource Data Warehouse , Land and Resource Data Warehouse , Data Warehouse Web Site , Data Mining , Data Mart , Data Warehouse Architecture , Data Warehouse Concepts , Data Warehouse Tutorial , Data Warehouse Definition , OLAP , Business Intelligence Read More

The Operational Data Lake: Your On Ramp to Big Data


Companies recognize the need to integrate big data into their real-time analytics and operations, but this poses a lot of technical and resource challenges. Meanwhile, those organizations that have operational data stores (ODSs) in place find that, while useful, they are expensive to scale. The ODS gives real-time visibility into operational data. While more cost-effective than a data warehouse, it uses outdated scaling technology, and performance upgrades require very specialized hardware. Plus, ODSs just can't handle the volume of data that has become a matter of fact for businesses today.

This white paper discusses the concept of the operational data lake, and its potential as an on-ramp to big data by upgrading outdated ODSs. Companies that are building a use case for big data, or those considering an upgrade to their ODS, may benefit from this stepping stone. With a Hadoop relational database management system (RDBMS), companies can expand their big data practices at their own pace.

data warehousing olap etl  Operational Data Lake: Your On Ramp to Big Data Companies recognize the need to integrate big data into their real-time analytics and operations, but this poses a lot of technical and resource challenges. Meanwhile, those organizations that have operational data stores (ODSs) in place find that, while useful, they are expensive to scale. The ODS gives real-time visibility into operational data. While more cost-effective than a data warehouse, it uses outdated scaling technology, and performance Read More

Governance from the Ground Up: Launching Your Data Governance Initiative


Although most executives recognize that an organization’s data is corporate asset, few organizations how to manage it as such. The data conversation is changing from philosophical questioning to hard-core tactics for data governance initiatives. This paper describes the components of data governance that will inform the right strategy and give companies a way to determine where and how to begin their data governance journeys.

data warehousing olap etl  Ground Up: Launching Your Data Governance Initiative Although most executives recognize that an organization’s data is corporate asset, few organizations how to manage it as such. The data conversation is changing from philosophical questioning to hard-core tactics for data governance initiatives. This paper describes the components of data governance that will inform the right strategy and give companies a way to determine where and how to begin their data governance journeys. Read More

Master Data Management: Extracting Value from Your Most Important Intangible Asset


In a 2006 SAP survey, 93 percent of respondents experienced data management issues during their most recent projects. The problem: many organizations believe that they are using master data, when in fact what they are relying on is data that is dispersed throughout the enterprise. Discover the importance of master data and how the ideal master data management (MDM) solution can help your business get it under control.

data warehousing olap etl  Data Management: Extracting Value from Your Most Important Intangible Asset Master Data Management: Extracting Value from Your Most Important Intangible Asset If you receive errors when attempting to view this white paper, please install the latest version of Adobe Reader. Founded in 1972, SAP has a rich history of innovation and growth as a true industry leader. SAP currently has sales and development locations in more than 50 countries worldwide and is listed on several exchanges, including the Read More

Agile Data Masking: Critical to Data Loss Prevention and Threat Reduction


Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes.

data warehousing olap etl  Data Masking: Critical to Data Loss Prevention and Threat Reduction Over the past several years data loss and data leaks have been a regular part of headline news. This surge in data leak activity has prompted many organizations to reevaluate their exposure to data leaks and institute automated, agile approaches to data masking. Well-implemented data masking secures data delivery and enhances compliance and security while accelerating data management processes. Read More

Data Quality Strategy: A Step-by-Step Approach


To realize the benefits of their investments in enterprise computing systems, organizations must have a detailed understanding of the quality of their data—how to clean it and how to keep it clean. Those organizations that approach this issue strategically will be successful. But what goes into a data quality strategy? This paper from Business Objects, an SAP company, explores the strategy in the context of data quality.

data warehousing olap etl  what goes into a data quality strategy? This paper from Business Objects, an SAP company, explores the strategy in the context of data quality. Read More

Data Blending for Dummies


Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant.

Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data providers, department data stores, in-house databases, and more, and become faster at delivering better information and results to their organizations. In the past, the challenge for data analysts has been accessing this data and cleansing and preparing the data for analysis. The access, cleansing, and preparing data stages are complex and time intensive. These days, however, software tools can help reduce the burden of data preparation, and turn data blending into an asset.

Read this e-book to understand why data blending is important, and learn how combining data means that you can get answers to your business questions and better meet your business needs. Also learn how to identify what features to look for in data blending software solutions, and how to successfully deploy these tools within your business. Data Blending for Dummies breaks the subject down into digestible sections, from understanding data blending to using data blending in the real world. Read on to discover how data blending can help your organization use its data sources to the utmost.

data warehousing olap etl  Blending for Dummies Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant. Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data Read More

Data Integration: Creating a Trustworthy Data Foundation for Business Intelligence


Organizations combine their historical data with current data from operational systems to satisfy business intelligence analysis and government reporting requirements. This paper discusses the importance of data integration and helps you identify key challenges of integrating data. It also provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data.

data warehousing olap etl  provides an overview of data warehousing and its variations, as well as summarizes the benefits and approaches to integrating data. Read More

Guidelines for Specification of Data Center Power Density


Conventional methods for specifying data center density don’t provide the guidance to assure predictable power and cooling performance for the latest IT equipment. Discover an improved method that can help assure compatibility with anticipated high-density loads, provide unambiguous instruction for design and installation of power and cooling equipment, prevent oversizing, and maximize electrical efficiency.

data warehousing olap etl  for Specification of Data Center Power Density Guidelines for Specification of Data Center Power Density If you receive errors when attempting to view this white paper, please install the latest version of Adobe Reader. In today''s always on, always available world where businesses can''t stop and downtime is measured in dollars, American Power Conversion (APC) provides protection against some of the leading causes of downtime, data loss and hardware damage: power problems and temperature. Read More

Data Quality: A Survival Guide for Marketing


Even with the finest marketing organizations, the success of marketing comes down to the data. Ensuring data quality can be a significant challenge, particularly when you have thousands or even millions of prospect records in your CRM system and you are trying to target the right prospect. Data quality, data integration, and other functions of enterprise information management (EIM) are crucial to this endeavor. Read more.

data warehousing olap etl  to the data. Ensuring data quality can be a significant challenge, particularly when you have thousands or even millions of prospect records in your CRM system and you are trying to target the right prospect. Data quality, data integration, and other functions of enterprise information management (EIM) are crucial to this endeavor. Read more. Read More

Big Data: Operationalizing the Buzz


Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more.

data warehousing olap etl  the Buzz Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more. Read More