X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 data warehouse community owb

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Warehouse Management Systems (WMS)

A warehouse management system (WMS) should provide database and user-level tools in order for a company to optimize its storage facilities while at the same time providing user level task direction and activity support. The WMS should enable warehouse operators to optimize pick, put-away, and replenishment functions by employing powerful system logic to select the best locations and sequences. 

Start Now

Documents related to » data warehouse community owb

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

data warehouse community owb  Practices for a Data Warehouse on Oracle Database 11g Best Practices for a Data Warehouse on Oracle Database 11g If you receive errors when attempting to view this white paper, please install the latest version of Adobe Reader. Oracle has been helping customers like you manage your business systems and information with reliable, secure, and integrated technologies. Source : Oracle Resources Related to Data Warehouse : Data Warehouse (Wikipedia) Best Practices for a Data Warehouse on Oracle Read More

A Definition of Data Warehousing


There is a great deal of confusion over the meaning of data warehousing. Simply defined, a data warehouse is a place for data, whereas data warehousing describes the process of defining, populating, and using a data warehouse. Creating, populating, and querying a data warehouse typically carries an extremely high price tag, but the return on investment can be substantial. Over 95% of the Fortune 1000 have a data warehouse initiative underway in some form.

data warehouse community owb  Definition of Data Warehousing Biographical Information Bill Inmon Bill Inmon is universally recognized as the father of the data warehouse. He has over 26 years of database technology management experience and data warehouse design expertise, and has published 36 books and more than 350 articles in major computer journals. His books have been translated into nine languages. He is known globally for his seminars on developing data warehouses and has been a keynote speaker for every major computing Read More

Real-time In-memory Technologies Do Not Make Data Warehousing Obsolete


The benefits of well thought-out architecture for designing and implementing large-scale DW environments are well-documented. Perhaps the best known of the DW architectures is the Corporate Information Factory. Since the creation of this architecture, there have been many technological advances, making its implementation faster, more scalable, and better performing. The data warehouse is no longer “off limits” to the business community; self-service BI, more sophisticated types of analytics, and true experimental (data science) analyses can now be performed with ease, and an increase in productivity and agility and flexibility of overall BI deployments is the result. Learn more in this white paper authored by one of the co-developers of the corporate information factory DW architecture.

data warehouse community owb  Technologies Do Not Make Data Warehousing Obsolete The benefits of well thought-out architecture for designing and implementing large-scale DW environments are well-documented. Perhaps the best known of the DW architectures is the Corporate Information Factory. Since the creation of this architecture, there have been many technological advances, making its implementation faster, more scalable, and better performing. The data warehouse is no longer “off limits” to the business community; self-service Read More

Microsoft says OLE for Data Mining: Is it Bull?


Microsoft released a new version of OLE DB (Object Linking and Embedding Database, based on Microsoft’s Component Object Model or COM) which supports a proprietary data mining specification. It is purported to extend the Structured Query Language (SQL) to allow easier and faster incorporation of data mining queries into existing data warehouse solutions.

data warehouse community owb  says OLE for Data Mining: Is it Bull? Event Summary REDMOND, Wash., March 7 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSFT) announced the beta release of the OLE DB for Data Mining specification, a protocol based on the SQL language, that provides software vendors and application developers with an open interface to more efficiently integrate data mining tools and capabilities into line-of-business and e-commerce applications. A dozen leading data mining and business intelligence vendors Read More

Oracle Database 11g for Data Warehousing and Business Intelligence


Oracle Database 11g is a database platform for data warehousing and business intelligence (BI) that includes integrated analytics, and embedded integration and data-quality. Get an overview of Oracle Database 11g’s capabilities for data warehousing, and learn how Oracle-based BI and data warehouse systems can integrate information, perform fast queries, scale to very large data volumes, and analyze any data.

data warehouse community owb  Database 11g for Data Warehousing and Business Intelligence Oracle Database 11g is a database platform for data warehousing and business intelligence (BI) that includes integrated analytics, and embedded integration and data-quality. Get an overview of Oracle Database 11g’s capabilities for data warehousing, and learn how Oracle-based BI and data warehouse systems can integrate information, perform fast queries, scale to very large data volumes, and analyze any data. Read More

Warehouse Management Systems: Pie in the Sky or Floating Bakery? Part One: Myths of the Warehouse Management Systems and Implementation


When searching for a warehouse management system (WMS), a number of myths surface. "Huge staff reductions", "quick and easy implementation", and "fast and big" returns on investment are common promises. These combined with the enticing "bells and whistles" of a system can ultimately turn an eager customer into a patient suffering from confusion or at the very least disorientation. Knowing the stories behind the myths and determining what your warehouse needs are can lead to a profitable investment.

data warehouse community owb  accounting management system,accounting software,asset management software,asset management system,asset tracking,asset tracking software,asset tracking system,automated management system,book inventory software,business inventory software,business management,business management software,crm management system,customer management system,distribution centers Read More

Data Migration Management: A Methodology to Sustaining Data Integrity for Going Live and Beyond


For many new system deployments, data migration is one of the last priorities. Data migration is often viewed as simply transferring data between systems, yet the business impact can be significant and detrimental to business continuity when proper data management is not applied. By embracing the five phases of a data migration management methodology outlined in this paper, you can deliver a new system with quality data.

data warehouse community owb  A Methodology to Sustaining Data Integrity for Going Live and Beyond For many new system deployments, data migration is one of the last priorities. Data migration is often viewed as simply transferring data between systems, yet the business impact can be significant and detrimental to business continuity when proper data management is not applied. By embracing the five phases of a data migration management methodology outlined in this paper, you can deliver a new system with quality data. Read More

Big Data: Operationalizing the Buzz


Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more.

data warehouse community owb  the Buzz Integrating big data initiatives into the fabric of everyday business operations is growing in importance. The types of projects being implemented overwhelmingly favor operational analytics. Operational analytics workloads are the integration of advanced analytics such as customer segmentation, predictive analytics, and graph analysis into operational workflows to provide real-time enhancements to business processes. Read this report to learn more. Read More

Data Quality: Cost or Profit?


Data quality has direct consequences on a company's bottom-line and its customer relationship management (CRM) strategy. Looking beyond general approaches and company policies that set expectations and establish data management procedures, we will explore applications and tools that help reduce the negative impact of poor data quality. Some CRM application providers like Interface Software have definitely taken data quality seriously and are contributing to solving some data quality issues.

data warehouse community owb  number of articles about data quality. ( Poor Data Quality Means A Waste of Money ; The Hidden Role of Data Quality in E-Commerce Success ; and, Continuous Data Quality Management: The Cornerstone of Zero-Latency Business Analytics .) This time our focus takes us to the specific domain of data quality within the customer relationship management (CRM) arena and how applications such as Interaction from Interface Software can help reduce the negative impact that poor data quality has on a CRM objective. Read More

Data Blending for Dummies


Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant.

Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data providers, department data stores, in-house databases, and more, and become faster at delivering better information and results to their organizations. In the past, the challenge for data analysts has been accessing this data and cleansing and preparing the data for analysis. The access, cleansing, and preparing data stages are complex and time intensive. These days, however, software tools can help reduce the burden of data preparation, and turn data blending into an asset.

Read this e-book to understand why data blending is important, and learn how combining data means that you can get answers to your business questions and better meet your business needs. Also learn how to identify what features to look for in data blending software solutions, and how to successfully deploy these tools within your business. Data Blending for Dummies breaks the subject down into digestible sections, from understanding data blending to using data blending in the real world. Read on to discover how data blending can help your organization use its data sources to the utmost.

data warehouse community owb  Blending for Dummies Data analysts support their organization’s decision makers by providing timely key information and answers to key business questions. Data analysts strive to use the best and most complete information possible, but as data increases over time, so does the time required to identify and combine all data sources that might be relevant. Data blending allows data analysts a way to access data from all data sources, including big data, the cloud, social media sources, third-party data Read More

Forrester TechRadar Report: Data Security


Data security is not just an IT issue these days but a business imperative, as data volumes explode and it is becoming a Herculean task to protect sensitive data from cybercriminals and prevent privacy infringements. As data volumes continue to rise, the burden of protecting sensitive data and preventing security breaches can be crushing. It is necessary to take a holistic, comprehensive, and long-lasting approach to data security that encompasses people, processes, and technology.

This Forrester TechRadar Data Security report provides a framework for developing a long-term approach to keeping your organization’s information secure. Data breaches and insider threats are becoming more common, and your organization needs to achieve compliance and secure privacy without affecting the bottom line. Most companies are also interested in adopting cloud, mobile, and other technologies, which can complicate data security matters even more.

This comprehensive and in-depth report evaluates 20 of the key traditional and emerging data security technologies. To make the report, Forrester interviewed over 40 experts, customers, and users, and drew from a wealth of analyst experience, insight, and research.

Use this report to get informed about what you need to consider to restrict and strictly enforce access control to data, monitor, and identify abnormal patterns of network or user behavior, block exfiltration of sensitive data, and render successful theft of data harmless.

data warehouse community owb  TechRadar Report: Data Security Data security is not just an IT issue these days but a business imperative, as data volumes explode and it is becoming a Herculean task to protect sensitive data from cybercriminals and prevent privacy infringements. As data volumes continue to rise, the burden of protecting sensitive data and preventing security breaches can be crushing. It is necessary to take a holistic, comprehensive, and long-lasting approach to data security that encompasses people, Read More

Business Basics: Unscrubbed Data Is Poisonous Data


Most business software system changes falter--if not fail--because of only a few root causes. Data quality is one of these root causes. The cost of high data quality is low, and the short- and long-term benefits are great.

data warehouse community owb  Basics: Unscrubbed Data Is Poisonous Data Introduction A manufacturing company experienced continually increasing overhead costs in its purchasing and materials departments. It also began to see increased inventory levels and production line delays. A consulting firm was brought in to analyze the company''s materials management processes and the level of competence of its materials and procurement staff. After mapping the entire process, from the creation of a bill of materials through post-sales Read More

Thinking Radically about Data Warehousing and Big Data: Interview with Roger Gaskell, CTO of Kognitio


Managing data—particularly in large numbers—still is and probably will be the number one priority for many organizations in the upcoming years. Many of the traditional ways to store and analyze large amounts of data are being replaced with new technologies and methodologies to manage the new volume, complexity, and analysis requirements. These include new ways of developing data warehousing, the

data warehouse community owb  Radically about Data Warehousing and Big Data: Interview with Roger Gaskell, CTO of Kognitio Managing data—particularly in large numbers—still is and probably will be the number one priority for many organizations in the upcoming years. Many of the traditional ways to store and analyze large amounts of data are being replaced with new technologies and methodologies to manage the new volume, complexity, and analysis requirements. These include new ways of developing data warehousing, the Read More

Enterprise Data Management: Migration without Migraines


Moving an organization’s critical data from a legacy system promises numerous benefits, but only if the migration is handled correctly. In practice, it takes an understanding of the entire ERP data lifecycle combined with industry-specific experience, knowledge, and skills to drive the process through the required steps accurately, efficiently, and in the right order. Read this white paper to learn more.

data warehouse community owb  Data Management: Migration without Migraines Moving an organization’s critical data from a legacy system promises numerous benefits, but only if the migration is handled correctly. In practice, it takes an understanding of the entire ERP data lifecycle combined with industry-specific experience, knowledge, and skills to drive the process through the required steps accurately, efficiently, and in the right order. Read this white paper to learn more. Read More

Customer Data Integration: A Primer


Customer data integration (CDI) involves consolidation of customer information for a centralized view of the customer experience. Implementing CDI within a customer relationship management initiative can help provide organizations with a successful framework to manage data on a continuous basis.

data warehouse community owb  Data Integration: A Primer Originally published - August 22, 2006 Introduction Implementing a customer data management system can be the difference between success and failure in terms of leveraging an organization''s customer relationship management (CRM) system. Since customers drive profitability, organizations need a way to provide their employees with a single view of the customer and to provide that customer with above-average customer service. Unfortunately, this is not always the case. Read More