X
Software Functionality Revealed in Detail
We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.
Get free sample report

Compare Software Solutions
Visit the TEC store to compare leading software solutions by funtionality, so that you can make accurate and informed software purchasing decisions.
Compare Now
 

 data mart olap

Software Functionality Revealed in Detail

We’ve opened the hood on every major category of enterprise software. Learn about thousands of features and functions, and how enterprise software really works.

Get free sample report
Compare Software Solutions

Visit the TEC store to compare leading software by functionality, so that you can make accurate and informed software purchasing decisions.

Compare Now

Outsourcing, IT Infrastructure

The IT Infrastructure Outsourcing knowledge base focuses on the selection of companies who provide outsource services in the areas of information technology (IT) infrastructure. The typical types of activities that these providers perform include data center operations; network operations; backup/recovery services, data storage management services; system administration services; end user support of desktop PCs, laptops, and handheld devices; web site, or application hosting, etc.  

Start Now

Documents related to » data mart olap

Data Mart Consolidation and Business Intelligence Standardization


Making information broadly and easily available to more users throughout an organization—and beyond the organization to customers, partners, and stakeholders—has never been more imperative. More enterprises are coming to understand the value of placing consistent, integrated data into the hands of everyone who needs it. Learn how a data mart consolidation program can help you improve decision making while cutting costs.

data mart olap  it. Learn how a data mart consolidation program can help you improve decision making while cutting costs. Read More

Distilling Data: The Importance of Data Quality in Business Intelligence


As an enterprise’s data grows in volume and complexity, a comprehensive data quality strategy is imperative to providing a reliable business intelligence environment. This article looks at issues in data quality and how they can be addressed.

data mart olap  Data: The Importance of Data Quality in Business Intelligence Originally Published - October 20, 2008 The zeal to get as much business data to the user as soon as possible often prevails over the establishment of processes that control the quality of data. Low data quality standards can lead to bad business decisions and missed opportunities. Even with a data warehouse that is well designed and equipped with the best tools for business intelligence (BI), users will encounter inefficiency and frustration Read More

Best Practices for a Data Warehouse on Oracle Database 11g


Companies are recognizing the value of an enterprise data warehouse (EDW) that provides a single 360-degree view of the business. But to ensure that your EDW performs and scales well, you need to get three things right: the hardware configuration, the data model, and the data loading process. Learn how designing these three things correctly can help you scale your EDW without constantly tuning or tweaking the system.

data mart olap  , Data Mining , Data Mart , Data Warehouse Architecture , Data Warehouse Concepts , Data Warehouse Tutorial , Data Warehouse Definition , OLAP , Business Intelligence , Huge Data Warehouse , Data Warehouse Appliance . NOTE: The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing Read More

The Shortcut Guide to Achieving Business Intelligence in Midsize Companies


This guide introduces you to the key concepts of business intelligence, including data modeling, data warehouses, online analytical processing (OLAP), and more. The author debunks many of the prevailing myths that scare small to medium businesses from investigating the use of business intelligence, and explains how the very same techniques and technologies used by massive enterprises are now available to them.

data mart olap  of business intelligence, including data modeling, data warehouses, online analytical processing (OLAP), and more. The author debunks many of the prevailing myths that scare small to medium businesses from investigating the use of business intelligence, and explains how the very same techniques and technologies used by massive enterprises are now available to them. Read More

In-Memory Analytics: A Multi-Dimensional Study


The primary bottleneck to high-performance multidimensional analysis has been slow hard drive speed—the time it takes for data to be transferred from disk storage to random access memory (RAM). With crashing RAM prices and 64-bit addressing, in-memory architecture provides new and innovative solutions for online analytical processing (OLAP). This article looks at why and how in-memory technology transforms analytic applications for BI.

data mart olap  300GB OLAP database or data mart to be completely resident in physical RAM and an 8TB data mart to be addressable in its entirety. It is important to note that memory available to an analytic application depends on the per-process space and although this includes space from slower disk-based storage, all of the per-process space is addressable and therefore available. Most in-memory analytics vendors include sophisticated compression techniques to bridge the gap between the volume of data and the Read More

Making Big Data Actionable: How Data Visualization and Other Tools Change the Game


To make big data actionable and profitable, firms must find ways to leverage their data. One option is to adopt powerful visualization tools. Through visualization, organizations can find and communicate new insights more easily. Learn how to make big data more actionable by using compelling data visualization tools and techniques.

data mart olap  Big Data Actionable: How Data Visualization and Other Tools Change the Game To make big data actionable and profitable, firms must find ways to leverage their data. One option is to adopt powerful visualization tools. Through visualization, organizations can find and communicate new insights more easily. Learn how to make big data more actionable by using compelling data visualization tools and techniques. Read More

Big Data, Little Data, and Everything in Between—IBM SPSS Solutions Help You Bring Analytics to Everyone


Regardless of the type or scale of business data your users need to harness and analyze, they need a straightforward, visual solution that is easy to use on the front end and highly scalable on the back end. Fortunately, IBM SPSS solutions provide just such an ecosystem that can make different kinds of data stores—from Hadoop to those proverbial spreadsheets—useful sources of business insight and decision support.

data mart olap  or scale of business data your users need to harness and analyze, they need a straightforward, visual solution that is easy to use on the front end and highly scalable on the back end. Fortunately, IBM SPSS solutions provide just such an ecosystem that can make different kinds of data stores—from Hadoop to those proverbial spreadsheets—useful sources of business insight and decision support. Read More

Backing up Data in the Private Cloud: Meeting the Challenges of Remote Data Protection - Requirements and Best Practices


This white paper describes some of the common challenges associated with protecting data on laptops and at home and remote offices and portrays proven solutions to the challenges of protecting distributed business data by establishing a private cloud/enterprise cloud. Learn which best practices can ensure business continuity throughout an organization with a distributed information technology (IT) infrastructure.

data mart olap  up Data in the Private Cloud: Meeting the Challenges of Remote Data Protection - Requirements and Best Practices This white paper describes some of the common challenges associated with protecting data on laptops and at home and remote offices and portrays proven solutions to the challenges of protecting distributed business data by establishing a private cloud/enterprise cloud. Learn which best practices can ensure business continuity throughout an organization with a distributed information Read More

Scalable Data Quality: A Seven-step Plan for Any Size Organization


Every record that fails to meet standards of quality can lead to lost revenue or unnecessary costs. A well-executed data quality initiative isn’t difficult, but it is crucial to getting maximum value out of your data. In small companies, for which every sales lead, order, or potential customer is valuable, poor data quality isn’t an option—implementing a thorough data quality solution is key to your success. Find out how.

data mart olap  Data Quality: A Seven-step Plan for Any Size Organization Melissa Data’s Data Quality Suite operates like a data quality firewall – instantly verifying, cleaning, and standardizing your contact data at point of entry, before it enters your database. Source : Melissa Data Resources Related to Scalable Data Quality: A Seven-step Plan for Any Size Organization : Data quality (Wikipedia) Scalable Data Quality: A Seven-step Plan for Any Size Organization Data Quality is also known as : Customer Read More

Data Security Is Less Expensive than Your Next Liability Lawsuit: Best Practices in Application Data Security


Insecure data. Heavy fines due to non-compliance. Loss of customers and reputation. It adds up to a nightmare scenario that businesses want to avoid at all costs. However, this nightmare is preventable: knowledge base-driven data security solutions can be critical tools for enterprises wanting to secure not only their data—but also their status in the marketplace.

data mart olap  Best Practices in Application Data Security Insecure data. Heavy fines due to non-compliance. Loss of customers and reputation. It adds up to a nightmare scenario that businesses want to avoid at all costs. However, this nightmare is preventable: knowledge base-driven data security solutions can be critical tools for enterprises wanting to secure not only their data—but also their status in the marketplace. Read More

10 Errors to Avoid When Building a Data Center


In the white paper ten errors to avoid when commissioning a data center, find out which mistakes to avoid when you're going through the data center...

data mart olap  Avoid When Building a Data Center Proper data center commissioning can help ensure the success of your data center design and build project. But it''s also a process that can go wrong in a number of different ways. In the white paper Ten Errors to Avoid when Commissioning a Data Center , find out which mistakes to avoid when you''re going through the data center commissioning process. From bringing in the commissioning agent too late into the process, to not identifying clear roles for commissioning team Read More

How to Comply with Data Security Regulations


A remote data backup solution can be compliant with almost any international, federal, or state data protection regulation—and can be compliant with the common caveats of most data security laws by providing functionality like data encryption and secure media control. And, as some regulations require files to be archived for several years, you can create a routine that archives files you select for backup and storage.

data mart olap  to Comply with Data Security Regulations BizDomainStore.com''s Remote Data Backups is the most cost effective, secure, and convenient way to automatically back up your mission critical data Source: BizDomainStore.com Resources Related to How to Comply with Data Security Regulations : Data Security (Wikipedia) How to Comply with Data Security Regulations Data security is also known as : Remote Data , Federal Data , State Data , Most Data , Mirrored Data , Financial Data , Client Data , Enterprise Data Read More

Types of Prefabricated Modular Data Centers


Data center systems or subsystems that are pre-assembled in a factory are often described with terms like prefabricated, containerized, modular, skid-based, pod-based, mobile, portable, self-contained, all-in-one, and more. There are, however, important distinctions between the various types of factory-built building blocks on the market. This paper proposes standard terminology for categorizing the types of prefabricated modular data centers, defines and compares their key attributes, and provides a framework for choosing the best approach(es) based on business requirements.

data mart olap  of Prefabricated Modular Data Centers Data center systems or subsystems that are pre-assembled in a factory are often described with terms like prefabricated, containerized, modular, skid-based, pod-based, mobile, portable, self-contained, all-in-one, and more. There are, however, important distinctions between the various types of factory-built building blocks on the market. This paper proposes standard terminology for categorizing the types of prefabricated modular data centers, defines and Read More

Operationalizing the Buzz: Big Data 2013


The world of Big Data is maturing at a dramatic pace and supporting many of the project activities, information users and financial sponsors that were once the domain of traditional structured data management projects. Research conducted by Enterprise Management Associates (EMA) and 9sight Consulting makes a clear case for the maturation of Big Data as a critical approach for innovative companies. The survey went beyond simple questions of strategy, adoption, and use to explore why and how companies are utilizing Big Data. Download the report and get all the results.

data mart olap  the Buzz: Big Data 2013 The world of Big Data is maturing at a dramatic pace and supporting many of the project activities, information users and financial sponsors that were once the domain of traditional structured data management projects. Research conducted by Enterprise Management Associates (EMA) and 9sight Consulting makes a clear case for the maturation of Big Data as a critical approach for innovative companies. The survey went beyond simple questions of strategy, adoption, and use Read More